library(metapsyData) library(metapsyTools) library(tidyverse) data.v2 = getData("depression-psiloctr", version="25.0.2") data = getData("depression-psiloctr", version="25.0.4") dat = data$data dat$full_ref = data.v2$data$full_ref list( dat = dat %>% dplyr::rename("d1" = "rob_rand", "d2" = "rob_dev", "d3" = "rob_miss", "d4" = "rob_meas", "d5" = "rob_sel") %>% filterPoolingData( primary_instrument == 1, primary_timepoint == 1, outcome_type == "msd" | outcome_type == "imsd", !(Detect(study, "Goodwin, 2022") & (!is.na(multi_arm1)) & Detect(multi_arm1, "10 mg")), !(Detect(study, "Goodwin, 2022") & (!is.na(multi_arm2)) & Detect(multi_arm2, "10 mg")), !(Detect(study, "Krempien, 2023") & (!is.na(multi_arm1)) & Detect(multi_arm1, "12 mg")), !(Detect(study, "Krempien, 2023") & (!is.na(multi_arm2)) & Detect(multi_arm2, "12 mg"))) %>% runMetaAnalysis("combined", which.combine="studies") %>% {.$model.combined$data} %>% {.$.g = .$.g*-1;.}, metadata = data$returnMetadata() ) -> PsiloDB # Define primary analysis filter PsiloDB$dat %>% { (is.na(.$post_crossover) | !str_detect(.$post_crossover, "1")) & (!str_detect(.$study, "Krempien 2023")) & (!str_detect(.$study, "Carhart-Harris 2021")) } -> PsiloDB$dat$primary save(PsiloDB, file="www/data/PsiloDB.rda")